A micromechanics-inspired constitutive model for shape-memory alloys

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A micromechanics-inspired constitutive model for shape-memory alloys

This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...

متن کامل

A micromechanics inspired constitutive model for shape-memory alloys: the one-dimensional case

This paper presents a constitutive model for shape-memory alloys that builds on ideas generated from recent micromechanical studies of the underlying microstructure. The presentation here is in one dimension. It is applicable in a wide temperature range that covers both the shape-memory effect and superelasticity, is valid for a wide range of strain rates and incorporates plasticity. The thermo...

متن کامل

A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation

A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale expe...

متن کامل

A 3d Micro-Plane Model for Shape Memory Alloys

are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...

متن کامل

Constitutive Model of Shape Memory Alloys for Asymmetric Quasiplastic Behavior

A simple constitutive model of shape memory alloys for analyses of tension–compression quasiplastic behavior is derived. Here, three martensitic variants are considered; namely, thermal-induced, tensile stress-induced, and compressive stress-induced martensitic variants. Reorientation from one variant to another variant is assumed to take place according to a reorientation energy criterion base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Smart Materials and Structures

سال: 2007

ISSN: 0964-1726,1361-665X

DOI: 10.1088/0964-1726/16/5/030